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An analy51s of the quantitative processes underlying conservation of
quantity is presented Models of quantitative operators (subitizing, counting,
estimation) are derived from adult performance in quantification tasks, and
some features of the operators are described, The emergence of conserva-
tion is described in terms of the development of the operators and a set of
rules which evoke them and coordinate their results. Empirical data related
to the developmental argument is discussed. '

The classic version of the Piagetian test for conservation of quantity
starts with the presentation of two distinct collections of equal amounts
of material (e.g., two rows of beads, two vessels of liquid, two lumps of
cldy, ete.). First the child is encouraged to establish their quantitative
equalify (2.g., “Is there as much to drink in this one as in that one?”; “Ts
it fair to give this bunch to you and that bunch to me?”; etc.). Then he
observes one of the collections undergo a transformation that changes
some of its perceptual features while maintaining its' quantity (e.g,
stretching, compressing, pouring into a vessel of different dimensions,
etc.). Finally, the child is asked to judge the relative quantity of the two
collections after the transformation, To be classified as “having conserva-
tion” the child must be able to assert the continuing quantitative equality
of the two collectons without resorting to a requantification and com-
parison after the transformation, That is, his response must be based not-
upon another direct observation, but rather upon recognition of the
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logical necessity for initially equal amounts to remain equal under “mere”
perceptual transformations.

This paper presents a developmental model of the processes that under-
lie successful performance on conservation tasks. The model is motivated
by the observation that conservation requires the child to make paired
comparisons of quantity, using processes that encode quantitative fea-
tures and produce guantitative representations. These processes are called
quantification operators. Our central thesis is that the development of
conservation is dependent upon the emergence of different guantification
operators.

The developmental theory is predicated upon two general systemic
principles.

(a) The developing system constantly searches for consistent se-
quences which enable it to eliminate redundant processing. A
consistent sequence is an internal representation of environ-
mental inputs and system processes that always yield the same
result. It is not simply an environmental regularity, but rather
regularity arising from the inferaction between the environment
and the system.

A typical sequence might consist of an initial knowledge state (Newell

and Simon, 1972); an operation upon that state, and a final test of the - -

result of the operation. If the enviromment were such that a specific
state-operator-test sequence repeatedly produced the same result, then
the final test would become redundant. The redundancy elimination
principle ultimately leads the system to dispense with the final test, and.
instead to retrieve from long-term memory (LTM) the result of previous
test applications for that specific state-operator sequence. This is tanta-
mount to prediction of what the outcome would have been if the test
had actually been made. At some intermediate stage between the initial
appearance of the ITM representation of the sequence and total re-
liance upon it, the system uses both modes of operation. The LTM repre-
sentation is used as a predictor and the actual test is carried out to verify
that prediction. d

(b) If, in a particular context, the system is unable fo detect con-
sistent sequences, it widens the basis of its search. In the case
of the development of quantity conservation this is accomplished
by widening the range of dimensions under consideration in the
search for consistent indicators of quantity.

The paper is divided into three sections. In the first section we define
three types of quantification operators, drawing upon the evidence from
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adult performance on quantification tasks. An account of the develop-
ment of these operators is also presented. In the second section we de-
scribe the properties of a system that “has” conservation of discontinuous
quantity {e.g., beads). The description takes the form of a set of rules
that evoke quantification operators and coordinate their outputs. The
third section describes the development of the system from a stage in
which it has neither quantification operators mor conservation rules,
through the discontinuous quantity stage described in the second section,
and on to a further stage in which it has conservation of continuous
quantity (e.g., area, volume). The emerging system has a bootstrapping
nature; the development of one quantification operator facilitates the
establishment of rules that in turn facilitate the development of another
quantification operator.

QUANTIFICATION OPERATORS

A quantification operator is an organized collection of elementary
processes that takes as input the stimulus to be quantified (e.g., a collec-
tion of blocks) as well as specified constraints (e.g., red only) and pro-
duces as output a quantitative symbol. Quantitative symbols are labeled
internal representations (e.g., “two,” “long,” “tiny”) that can be used in
quantitative comparisons. Given two such symbols, the organism can de-
termine their relative magnitudes, whereas given two nonquantitative
‘'symbols, it can determine only whether or not they are identical.

We postulate the existence of three quantification operators: subitizing,
counting, and estimation. Evidence for these operators comes from anal-
yses of reaction times (RT) and errors in tasks requiring adult subjects
to report the number of items in a display (Jensen, Reese, & Reese, 1950,
Kaufman, Lord, Reese, & Volkman, 1949; Saltzman & Garner, 1948; Taves,
1941; Woodworth & Schlosberg, 1954, pp. 90-105). A reanalysis of these
studies and some new evidence is provided in Klahr (1973). The earlier
investigations were addressed to the guestion of whether the time re-
quired to quantify a collection is independent of the number of items
viewed (n). The answer appears to be negative. A plot of RT versus n
yields a monotone increasing curve in the range from 1 to 30 items. How-
ever, around n = 5 the slope abruptly changes from approximately 40 to
approximately 300 milliseconds (rhs) per item (Klahr, 1973). There are
corresponding discontinuities in error rates and reported self-confidence.
Finally, there is a subjectively different experience for n above and below
5. (The immediacy of judgments for small n may account for the er-
roneous impressions of early investigators, e.g., Jevons, 1871, that their
RTs were independent of n.)
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Subitizing

We have retained the term “subitizing” (Kaufman et al., 1949) for
the operator used to quantify small collections. The parameters that de-
fine subitizing (Q,) are a slope of 40 ms and a maximum range of
five or six items. These parameters are similar to short-term memory
(STM) scanning rates (Sternberg, 1966, 1967) and capacity limits { Mil-
ler, 1956). Thus, they suggest that subitizing involves a serial self-termi-
nating scan of STM for a match between the encoded stimulus and a
short ordered list of quantitative symbols. We assume that adults have,
stored in long-term memory (LTM), a subitizing list consisting of an
ordered set of quantitative symbols representing the first five or six
cardinal values. The quantitative symbols on the subitizing list are dis-
tinct representations of pure cardinality (e.g., “twoness”).?

When Q, is invoked, the subitizing list is transferred from LTM to
STM and scanned at approximately 40 ms per symbol.® If a match is found
between the encoded stimulus and one of the symbols on the subitizing
list, the search is terminated and the label associated with the matching

* A more formal statement of the “number essence” of these symbols utilizes the
notion of a tolerance space (Zeeman & Buneman, 1968). If, in the internal representa-
tion of the quantitative aspects of the stimulus, two objects a and b are not dis-
tingunished, then they are within tolerance, (@~ b), Otherwise, they are ouiside

tolerance. The tolerance space (TS) is defined as the set of pairs.[g, b] such that . ... ...

a ~ b. The tolerance is a function of both the stimulus and the goal of the quantifica-
tion effort. For example, if the goal is to determine the number of pages in a book,
then the letters, words, and paragraphs on a given page are pot distinguished, and
all the pairs of such elements on a given page are within tolerance. Thus each page is
a single TS, Similarly, if the goal were to determine the number of words in the book,
each word would constitute a TS. A TS is represented by the primitivé quantitative
element in the system: a tolerance space atom (TSA). We assume that the quantta-
tive symbols on the subitizing list are sublists of one, two, three, etc., TSAs. The
encoded representation of the stimulus is also a list of TSAs produced by an interac-
tion between the stimulus and the system. Early in the processing sequence, perhaps
in iconic memory (Neisser, 1867; Sperling, 1960), the tolerance of the stimulus to be
encoded is determined according to the goal of the quantification attempt. We assume,
as do most of the STM scanning models that the time for comparison of any specific
item in STM with the test item is constant. Thus, although the quantitative symbols
on the subitizing list are sublists of differing length, their match with the test stimulus
can be viewed as essentially parallel, at least with respect to the scanning rate.

°The most often quoted results from Sternberg’s studies are slopes of RT as a
function of the length of the list being scanned, i.e., the “length functions” (Stermn-
berg, 1967). In our model the length of the postulated subitizing lst is fixed, and the
comparable Sternberg slopes are the “position functions”: RT vs serial position. For
context recognition Sternberg reports a mean over subjects of 92 ms per item with
individual subject means ranging from 22 to 240. However, Ellis and Chase (1971,
p. 384) report a 40 ms slope for the position functon in item recognition tasks.
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symbol is produced. If no match is found, then another quantification
operator is applied (either counting or estimation).

Counting

The counting operator (Q.) produces the 300 ms slope described
above. Q, requires the coordination of processes that notice each object
while generating the sequence of number names. When there are no
more objects to be noticed, the current name is assigned to the collection
of objects.

Under some conditions (e.g., instructons for speed) subjects appear
to count by subitizing two or three items and adding the result (Klahr,
1973). However, we define counting here as the one-at-a-time process
that subjects utilize when so instructed. Q. thus requires two auxiliary
structures in LTM: a finite, ordered list of number names together with
some rules for generating number names indefinitely, and rules to ensure
that each object is noticed only once. There are several forms of such
attention directing processes, ranging from motor systems that move ob-
jects as they are noticed, to well-defined eye movement patterns.

More than half of the additional processing time per item appears to
come from moving through the number name list. Beckwith and Restle
(1966) gave explicit instructions to “enumerate as quickly as possible”
(p. 439) and found average slopes of 350 ms. In a task requiring subjects
to implicitly recite the alphabet from an initial letter to a final letter,
Olshavsky and Gregg (1970) found a processing rate of 150 ms per item,
similar to the rate of implicit recitation found by Landauer (1962). When
subjects were required to scan a specified number of letters the rate de-
creased to 260 ms. Direct evidence for the rate of “spatial enumeration
without counting” ( Potter & Levy, 1968) is not available.

Estimation

The logical necessity for a quantifier other than subitizing and count-
ing is clear. Quantitative symbols can be produced in situations involving
great numbers, or limited exposure duration, or continuous gquantity,
where neither Q, or Q. could function. For example, Kaufman et al.
(1949) found that with a 200 ms exposure of from 1 to 200 dots, RT was
constant above n = 6.

The determination of the nature of the estimation quantifier (Q.) is
puzzling, because we are attempting to characterize a system that can
encode continuous quantity and yet (if it is to be consistent with the
body of literature on information processing models of cognition) must
be composed of discontinuous data structures and processes. Q. is essen-
tially measurement: repeated application of a “standard” unit. These
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standards are based upon the idiosyncratic experience of the particular

system. Thus, some people estimate length in terms of football fields;

others in terms of automobiles. In any given system many such standards
exist for each class of quantity (length, number, volume, etc.) and they
are utilized according to the particular task requirements.*

Development of Quantification Operators

In adults, Qs, Q., and Q. are fully developed. For very small n, Qs
is used, for very large n, or for continuous quantity, Q. is used; for in-
termediate situations Q. is used.

In this section we shall outline some features of the relative develop-

mental rates for these operators. Two kinds of things may change as an
information processing system develops: its processes and its representa-
tions. Here we focus upon representational changes, deferring an account
of process changes until the section on development of conservation rules.

Bepresentations for quantity. What might be the steps leading to the
acquisition of the postulated subitizing list? We postulate the emergence
of an increasingly general and efficient representation. The representa-
tions move from the concrete, heterogenous to the abstract, homogenous.
At the first stage we will consider, the organism represents a collection
of two identical objects by two identical symbol structures., Thus, a pair

of identical items, A and B, are represented as shown in Fig. la. The total

collection X consists of symbol structures for both A and B. The symbol
structures themselves consist of some elementary symbols (=, 8, y) that
completely characterize the objects. Such a representation is highly re-
dundant, and the system, through its efforts at redundancy elimination,
eventually adopts an alternative representation. In dealing with collec-
tions of identical objects, only a single fully described symbol structure
is created, and the other objects are represented by special symbols (¢)
indicating replications of the symbol structure to which they are
attached.’ Figure 1b shows this representation for a collection, X, of
three identical objects.

*The zero slope for estimation would result from a Q. in which the size of the
standard is itself a function of n. For example, for n < 50 every 10 dots might be
considered to be a 'TS. For 50 < n < 200 25 dots might be a TS, etc. If the rate
of Q. was about the same as Q., once the tolerance had been determined, then the
plot of RT versus n would be a shallow sawtooth. If we allow some overlap on the
ranges that determine the TS size then we would find the zero slope with increasing
dispersion reported by Kaufman et al. (1949).

" Newell and Simon (1972) use the terms “symbol type” for fully described object
and “symbol token” for the representation of distinct instances of the symbol type.
Our model starts by representing a collection of items as several identical symbol
types (Fig. la). The second stage {Fig. 1b) utilizes a special kind of token, one that
denotes replication of whatever it is attached to (as in the use of the ditto symbol ).
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With increasing experience in dealing with a particular type of object,
several such “model collections,” (Dantzig, 1954) each representing col-
lections of different numerosity, are constructed and stored in LTM.
Figure 1c shows such a structure for 1, 4, and 2 A's. A similar process
occurs for other types of objects with which the system has to deal regu-
larly. Ultimately the system has a number of lists (as yet not numerically
ordered) representing the same range of cardinal numbers but tied by
labeling to specific classes of objects.

The emergence of the next phase in the refinement of the subitizing
list is again attributed to the removal of redundancy. The number of
redundant lists is steadily reduced by “broadening” the labels (ie., re-
ducing the specificity of the fully described symbol structure) to permit
the use of single collections of lists in coping with several classes or cate-
gories.® This movement away from several lists linked to specific, concrete
classes is eventually complete and gives rise to a single, abstract system
of sublists of tolerance space symbols.

Some developmental evidence relevant to this process has been pro-
vided by Gast (1957) in an investigation of the degree of perceptual and
functional heterogeneity of stimulus materials which a child can tolerate
in admitting a collection of objects as representing 2 single cardinal set
for purposes of enumeration or number matching. His findings indicate
an initial stage in which virtually complete homogeneity of the elements
is required, a second in which perceptual diversity is possible, within
certain limits of qualitative resemblance among the elements, and a final
one in which the objects may belong to several disjunctive and alto-
gether disparate classes.

How do the symbols represénting different cardinal values become
labeled and ordered? There seem to be two likely processes. In one, the
familiar number names become attached to the appropriate subitizing

s A fairly advanced point in this process is {llustrated in the Tsimshian language
of a British Columbian tribe (Dantzig, 1954). Tt comprises seven distinct sets of
number words one of which is used in dealing with flat objects, one with round oh-
jects, another for long objects and so on.
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symbols by direct association. A child matches a collection with the ap-
propriate symbol and an adult verbalizes the appropriate label, Alter-
natively, the labels may be derived from an interaction between subitizing
and counting, Once a child has learned the sequence of number names
and combined them with the attention direction techniques required for
the process of counting, he has two systems available for quantifying
collections in the subitizing range. When counting techniques are being
learned, small collections are both subitized and then counted. This facili.
tates the association of number labels with the ordinal symbols on the
subitizing list. Once the subitizing symbols have been so labeled, they
are rearranged to bring them into correspondence with the order of the
list of familiar symbols used by counting.

The components of counting are learned at different rates, Descoeudres
(1921) found that it was not until the age of 4:6 yr, on average, that
children can accurately count collections of up to six objects even when
placing their fingers on each object as it is counted. Learning of the se-
quence of number names is considerably quicker. For example, children
are able to correctly generate the name sequence from 1 to 4 at the age
of 2:6 but it is considerably longer before the coordination with the
noticing techniques is achieved and the semantic basis for counting
established.

. ..Developmental sequence for subitizing and counting, We have alluded

several times to the relation between the development of Q, and Q.. In
this section we shall address the issue directly, Flavell (1971) has con-
vincingly argued that the concept of developmental primacy is ill-defined
without simultaneous consideration of relative starting points, growth
rates, and points of “functional maturity.” In adults both Q, and Q. are
fully developed and utilized under appropriate conditions, Thus, they are
related, in Flavell’s (1972) terms by “addition”: once available “both con-
tinue to be used for the remainder of one’s cognitive career” (p. 287).
However, the development of Q. rests upon the emergence of the nitial
quantitative representations utilized by Q., thus the operators are also
related by “mediation.” Flavell describes the mediation of item X, by
item X, as follows:

The acquisition of X, could be described as constituting some sort
of developmental route or path to X,, as providing an occasion or
opportunity for the emergence of X,, as facilitating the genesis of
Xz .. (p. 812),

The interdependence between Q. and Q, is more complex than any of
Flavell's ideal seéquences, since Q.. once it has started to develop, in-
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fluences the representation used by Q.. As described earlier, the ordering
of the subitizing list is partly accomplished through the simultaneous ap-
plication of Q and Q. to small collections.

On logical grounds a Q; of limited capacity (say n = 2) must develop
before Q.. If Q, is applied to a static collection, the quantitative symbol
produced at one moment is the same as that produced at the next. For
the emerging system this stability does not yet exist for Q.. The unique
topological properties of collections of small n, and the invariance of
these properties over a wide range of perceptual differences contribute
to the early emergence of Qs as a reliable quantifier. This is not to say
that the other operators are not employed, but just that they do not yet
yield any consistent results, even in a static environment. Q. requires a
socially transmitted technology including verbal labels, noticing orders,
and place keeping—processes that develop more slowly than subitizing.
(Q. at this early stage of development is the source of much inconsist-
ency, because, as we shall see below, there is not yet a system of rules
that considers the relationships between the various quantities that can
be estimated—density, length, width, etc.—and the total amount being
quantified.) Furthermore, it is impossible for a system that has not yet
developed representations for numerosity to attach the number labels
of counting to anythmg meaningful. Number discrimination must precede
counting, and the first few such symbols constitute the early emergence
of Q..

Thus, we postulate the onset of Q. prior to the onset of Q. and a
growth period during which the upper range of Q. increases from n = 1
or 2 to n = 5 or 6, while the range of Q. is extended indefinitely. A plot
of maximum range (n) versus age would show a curve for Q. that started
at the origin and asymptotically approached the upper limit, and a curve
for Q. that started during the second year and increased, perhaps posi-
tively accelerated, 1ndeﬁmtely These two curves would cross in the regmn
of n = 2-3, and age = 2-3 yr.

Qur operational definition of Q, is based upon the reaction times for
verbal responses. There is little direct empirical data from very young
children bearing upon the postulated developmental interactions. Gelman
(1972b), in a comprehensive review of empirical investigations of early
number concepts, compares results from Beckmann (1924) and Des-
coeudres (1921) and her own investigations (Gelman, 1972a) in which
subitizing is defined by the absence of overt counting. By this criterion,
for n between 3 and 6, children are more likely to count than to subitize
the younger they are (age range 4-6 yr). For any given age, the fre-
quency of counting increases with n. From this and other similar studies
Gelman concludes that counting precedes subitizing.
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There seem to be three problems with this position.” First, the definition
and scoring of counting versus subitizing appears to both under- and
overestimate the amount of subitizing. It underestimates subitizing when
both Q. and Q, are used. As indicated eatlier, during the development
of Q., both Q, and Q. are often used on the same task. It overestimates
subitizing (as defined by us) when more than 60% of the 6-yr olds are
reported as subitizers for n = 6. Adult studies tend to show an upper
range for Qs of 4 or 5. Second, it does not account for the fact that when
n = 2, subitizing is almost always used (75% of the time for 4-yr olds,
98% for 6-yr olds). Finally, it does not offer any explanation for the process
whereby quantification, at least to the extent of number discrimination,
could take place in a nonverbal system, e.g., birds (Koehler, 1949).

CONSERVATION OF QUANTITY

In this section we formally describe the principal processes in a system
that has conservation of quantity.

Let «,y, z = Internal symbols representing collections of material;
a’, y', 2’ = representations for collections of material after any
transformation;
Qi = any quantification operator i, e{s,c,e}, where s-subifizing,
' e-counting, e-estimation; ~~ o o oo o
z; = quantitative symbol for collection z produced by operator
Qs;

Ty = addition/subtraction transformation;

Ty = perceptual transformation (the class of all T, and the
class of all T}, are mutually exclusive);

= = gsame quantitative symbol;

Q = equal quantity.

There are three kinds of dynamics for which we need additional
notation:

i. T(x) — =z’ internal representation for the application of a trans-
formation to an external collection.

i. Qi(z) — z; denotes the application of an operator to a collection ;
it produces a quantitative symbol,

fii. C—— A i3 a production rule consisting of a condition (C) and an

action. (A). The condition is a set of tests for knowledge

" Although we disagree with Gelman on this point, there are many similarities
between Gelman’s (1972b) theoretical position and ours. There are a few terminolog-
ical differences. She uses “estimator” for what we call guantification operator, and
“operator” for what we call the conservation rules. Thus, Gelman describes subitizing
and counting as two kinds of estimators.
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elements, i.e., symbols representing the current state .
of knowledge of the system; the action indicates what
new elements are to be added {o the knowledge state
if all the elements in C are satisfied. (For a compre-
hensive and definitive statement on the use of produe-
tion rules as representations for problem solving systems
see Newell & Simon, 1972; applications to cognitive
development are presented in Klahr & Wallace, 1972.)

There is a major, variant of the conservation task in which only a single
collection is used. There is no initial comparison, and the posttransfor-
mation judgment is based upon the relative quantity in the initial and
final forms of the collecton. We use Elkind’s (1967) terminology in
which the two-collection. task is called equivalence conservation (EG)
and the one-collection task is identity conservation (1C):

As perceived by a system that has conservation, EC can be repre- -
sented as follows: n

1.

i,

ivl

Two collections are quantified:

__ Qi) — z3; Q) =y
Their quantitative equality is established. This requires the appli-
cation of a rule that says, in effect “if the quantitative symbols for
two collections are the same, then those collections are of the same
quantity.” This can be expressed as a production rule:

Q
(z: = y)) = (z = ).
Collection ¢ undergoes a perceptual transformation:

Tp(y) — ). |
The relative amount of the two collections is determined by apply-
ing the conservation rule:

@ 2 )T ) =) —— @ 2 )

This rule says: if you know that collections x and y were of equal
quantity, and that y underwent a perceptual transformation which
changed it to y’, then you also know that collections x and ' are
of equal quantity. Since the two elements that appear as conditions
in this rule have been previously entered into the knowledge state,
the condition is satisied. Thus, the action is taken: the fact

(= Q y") is added to the knowledge state.
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The representation for IC is much simpler, since it involves only the
initial and final forms of a single collection. The sequence is:

i. Transform collection: Ty(z) — 2,
i. Apply IC rule: (To(z) = z') = (' 3 z)

THE DEVELOPMENT OF CONSERVATION

* A developmental theory of conservation must account for the emergence
and coordination of the functions utilized above. It must describe the
process whereby addition/subtraction ﬁansformatmns acquire a special
status that is related to quantity. The development of discriminations
between T, and T. is central to the concept of quantity conservation.
Finally, it must describe the process whereby 2 system that has reliable
means both of determining quantity and of discriminating between trans-
formations  eventually develops the conservation inference: “nothing
added, nothing subtracted means equal quantities remain equal.”

In this section we will offer an account of conservation based upon the

emergence of Q;, Q., and Q. as reliable guantifiers.- Our argument is- - -~

that Q. enables the system to first develop rules for IC with discontin-
uous quantity, From this development follow extensions to EC of number
and continuous quantity and to conservation of inequality as well as
equality.

Identity Conservation Based Upon Subitizing

The first stability developed is based upon the consistent results yielded
by Q.. The end result of the development of Q. (described earlier) is its
status as a reliable indicator of quantity. This is represented by three
production rules:

(= 1) = & 2 g) w
(00 < 1) o (= ) @
(@0 > 4 = 0 S ). 3)

[Rules 2 and 3 introduce notation for inequality of symbols (<, >) and

for corresponding quantitative inequa]ity of collections (% , 3 ).] The
function of Rule 1, for example, is to scan the symbols representing the
outcome of a comparison of two quantitative symbols { =) and to produce

the annronriate Aanantrafve ralafinnsl otbvilaatas fg Y Thie mee 2hne T
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added to the representations for the extensive properties of the collec-
tions being compared. Thus, the system can represent the fact that col-
lection %, in addition to being red, etc, is equal in quantity to collection
y. We can view these rules as explicit statements that symbols produced
by Q, are what Wallach (1969) calls “indicator properties’: “perceptible
properties, sameness of which indicates equality and difference inequality
(p. 207). Qs provides the basis for the emergence of the first such in-
dicator properties.

Over time, the system observes many transformations applied to small
collections, as the result of its own actions or those of some external
agent, In encoding these situations it builds lists of initial state—transfor-
mation-final relation sequences and stores them in LTM. Sequences pro-
duced by the application of Q., Qe, or Qe t0 specific situations are stored.
At first no operator provides 2a basis for the discrimination of quantity
preserving transformations from quantity modifying transformations.
The emergence of Qs as the frst reliable indicator of quantity facilitates
this initial differentiation. The many naturally occurring forms of the
identity conservation paradigm provide the necessary experience for
this learning. On innumerable occasions (e.g., handling blocks, dolls,
cookies) the child quantifies a gmall collection with Q., observes a trans-
formation, quantifies the resultant collection and compares the two gquan-
titative symbols. Some transformations consistently yield the result that
x, = %'s. Others yield x5 > %'s, and still others %5 < x'.. The ability to cope
with all three relations is not attained simultaneously. Equality and in-
equality seem 10 develop sequentially, although the experimental evi-
dence on their order of appearance is inconclusive (Beilin, 1968). Within
the inequality relation there is some indication that “more” is coped with
successfully before “less” (Donaldson & Wales, 1970). These consistent
sequences become classified, in LTM, into three distinct classes hased
upon this relational test because it is the only quantitative regularity that
exists at this point. What were initially discriminable but arbitrarily la-
beled transformations become classified according to the relation they
produce between % and «'s. Thus certain transformations (e.g., rotations,
compressions) are classified as those for which Qs consistently yields the
sarme result after the transformation as before. Other transformations are
associated with the consistent production of either greater (€.8. transfer
from parent’s hand to collection) or lesser quantities (e.g. placing in
mouth and swallowing). “ -

This three-way classification defines the transformations. When a
transformation 18 ohserved, its class, denoted by the relation it produces
between %, and s iS determined. Concurrently with this development,
the rules that infer quantitative relations from relations between symbols
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produced by Q: (Rules 1-3) are also developing. Thus the transforma-
tions themselves become known to the system as either quantity preserv-
ing (T,) or as quantity changing (T.).

According to the general system principle these regularities are inj-
tially used to predict the outcome which is then verified by executing
the final test. In their final form, the test is omitted and the system relies
entirely upon three rules for identity conservation:

Q

(To) = 2) > (o7 = 4 (4)
(T4(2) = &) > (o7 g ) ()
(T-(@) = ) = (& < 3) (6)
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for this view, plus evidence that the rules are initially specific to the
objects as well as the transformations is provided by Curcio, Robbins, and
Ela (1971). They found that in a group of 167 preschoolers, 52 passed
EC when their fingers were used as the items to be conserved, but only
13 passed when objects were used. Gelman (1972a) has convincingly
demonstrated that young children possess number invariance rules, éven
though they cannot pass the classic conservation task. She further em-
phasizes the importance of decomposing the conservation task into dis-
tinct components, including both quantification operators and rules that
utilize their results.

Our account of the discrimination of T. from T, assigns a major role
to the development and utilization of the subitizing quantification opera-
tor (Q,). This seems plausible in the context of children’s everyday ex-
perience. As Bunt (1951) has observed, in the course of play experiences
and daily activities there is ample opportunity for children to employ
Q, to detect the consistent effects of addition, subtraction and perceptual
transformations on small quantities of discrete items such as the other
members of his family, toys, shoes, cutlery, and so on. With the develop-
ment of Q. and Q., this experience is gradually extended from small
numbers of objects to larger and larger collections, progressing over time
through the range usually studied in investigations labeled as conserva-
tion of discontinuous quantity, of number, and of continuous quantity. -

In order to account for the development of conservation rules covering
this extended range, we must add to the current capacity of our develop-
ing system. The additional capacity must include:

a. the ahility to perform successtully on the equivalence conservation
task.

b. the ability to conserve inequality as well as equality. Initial inequal-
ities are of course impossible in the IC situation, but they are a
regular feature of the child’s experience in two-collection transfor-
mational situations.

c. the ability to conserve when comparisons are based upon the output
of quantification operators other than Q,. -

d. the ability to coordinate pairs of quantitative symbols, as in con-
servation tasks involving the height and width of liquids in
containers.

We will treat the development of each of these capacities in the order
listed above, although we assume that they develop more or less con-
currently once the components of identity conservation have developed.
The only aspect of “stage” that we maintain is that the development of Qs
and the discrimination of T. from T, start before the onset of any of the
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other capacities. This is analogous to what Flavell (1971) calls an ex-
treme version of the gradual-development model.

It asserts that a stage-specific item achieves its final level of func-
tional maturity only after and perhaps only well after the child has
begun the development of the next stage’s item . . . items from two or

more stages can undergo developmental change concurrently
(p. 427).

Equivalence Conservation Based upon Subitizing

Consider the development of EC, assuming for the moment that Qs
is the only reliable indicator of quantity and that T, and T, are differen-
tiated. The general process of development is the same as that described
in the development of IC. Systematic quantitative regularities among
small collections of discrete objects are noticed and stored by the system,
These particular aspects of environmental regularity are attended to by
the system because they are among the few quantitative things that the
system can notice at this stage of its development. Thus, for example, it
notices that whenever two collections (within the Q, range) are initially
equal and T, is performed on one of them, they remain equal. Similar
regularities are generated by observation and storage of the effects of T,
~and T. on initially equal collections. Through the process, described above,.
of storage, prediction and testing, and eventually prediction without test-
ing, these three classes of regularities acquire the status of rules for EC:

(z @ DTolg) = ) = (& ¥, (7)
Q , Q

@2 )T t) = ) = (@ S 1), ®)

@ 2 HIT)=y) o @ S ). ©

EC (Rules 7-9) is clearly more difficult than IC (Rules 4-8) in that
it requires an additional element in the condition and must distinguish
three quantities (x, y, y’) rather than two (%, 2’). Furthermore, the ex-
tension of EC rules to inequivalence rules (see below) has no correspond-
ing situation in IC, so that the two systems of rules are also of unequal
difficulty. However, we do not assume a developmental sequence for
EC and IC. Both develop concurrently once T. and T, have been dif-
ferentiated, and this differentiation is based upon regularities that occur
in both paradigms. Evidence for the cooccurrence of IC and EC over a
variety of materials and quantification operators has been reported by
Moynahan and Glick (1972) and Northman and Gruen (1970).

We do not assume that EC operates by first applying a corresponding
IC rule and then utilizing a transitive inference of the form:
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(x 2 Yy 3 z) = (x 3 2).

There is no necessity for the prior existence of transitivity rules, since
equivalence conservation is based upon empirical regularities.

In addition to the three regularities underlying equivalence conserva-
tion, the system also encounters the additional six forms of empirical
results generated by each of the three transformations acting upon the
two kinds of initial inequalities. Two of these six do not produce any
regularities,. When T, is applied to the lesser of two collections, or T. to
“the greater, the result can be any of the three relations. The ambiguity
arises from the lack of a metric upon T, and T-, so that the amount of
the transformation is not utilized in encoding the environmental
regularities.

Since these two situations do not provide any consistent sequences,
they do not become rules, because during the prediction-verification
stage, the prediction will often be disconfirmed. Thus, only four addi-
tional rules develop from the empirical regularities involving initial
inequalities:

(= @ (Toly) =) —»— (= 3 y) (10)
C (@ @. I () »y) —— @ @ ¥ (11
(x % P (To(y) = y) —»— (x % y) (12)
(x 3 VW (Tily) = y) = (= % y)- (13)

We have described the development of two sets of rules, both of which
utilize knowledge elements that represent quantity. We have argued that
the first operator to provide a basis for reliable quantitative comparisons
(albeit at low numerical levels) is Q, and that its early stabilization facili-
tates the discrimination of T,, T,, and T.. These in turn facilitate the
observation of the empirical regularities that underly the formation of .
the rules for EC and IC. In the course of this development of rules that
utilize knowledge about quantity, the other two quantification operators
are also developing, and it is to that development and its relation to IC
and EC rules that we turn next.

Generalization of Conservation Rules to Q.

The following discussion is confined to IC but it applies mutatis
mutandis to EC. Once the empirical regularities based upon Q, generate
Rules 4-6, the system can attempt to apply these rules to those situations
which are simultaneously within the range of both Q; and Q.. As Q. be-
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comes a reliable quantifier the rules are found to fit in the sense that the
classes of transformations produce results corresponding to those in Rules
46, Initially the results are not identical to the earlier kinds of sameness
and differentness, since in the case of Q; they are derived from compari-
sons of lists of tolerance space symbols while in that of Q. they are de-
rived from comparisons based on the number series. Later, they probably
are identical since, once number names are attached to the subitizing
sublists, comparisons between quantitative values derived via Q, can be
carried out by means of the number series used by Q.. Generalization of
the rules to the operations of Q. beyond the range of Q. is based on a
similarity of both the initial conditions—collections of discrete elements—
and the transformations.

Three general points should be added here: (a) When Q; and Q. are
considered, the fit stops at correspondence since Q, results involve the
comparison of size analog symbols. (b) Correspondences and/or identities
between the outcomes of the quantification of discrete collections and of
quantitative comparisons between collections obtained by using Qs, Q.,
and Q. may well be detected by the system in the course of applying any
two operators to the same situation before, and quite independently of,
any concern with the effects of transformations. Such preestablished cor-
respondences would facilitate generalization of the rules. (¢) The process
of establishing correspondences between the outcomes of quantitative
comparisons carried out via the three operators can be regarded as
widening the semantic basis of verbal terms such as “more,” “less,” and
“equal.”

Generalization of Conservation Rules to Q,

Most of the judgmental situations ultimately encountered by the child
deal with materials that are either beyond the range of Q. or Q; or are
continuous. In such cases only Q. is appropriate. However, Q.’s widened
scope has associated with it an increase in the complexity of the rules
that utilize it.

The overall course of the generalization of conservation rules is the
same when the quantitative symbols are generated by Q. as by Q.. First
the three forms of transformations must be discriminated and associated
with some regular outcomes. Then the classes of transformations are
found to produce results corresponding to the conservation Rules 4-6.
The use of Q. introduces two difficulties. One is that the diversity of
phenomena that must be represented as transformations is increased com-
pared to the transformations upon small collections of discontinuous
quantity. The other is that for the first time the system must quantify
two dimensions of each quantity under consideration and the results of
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these double quantiﬁcatiens must be pr’opeﬂy coordinated hefore any
regularities can appear-

Inadequacy of unidimensional quantiﬁcat-ion. Initial attempts to quan”
iy via Qe lead to inconsistent results, Decause as Halford (1970) bas
indicated, the quantitalive symbols generated for comparison are based
upon only one dimension of the gituation. I neither 1G no¥ EC are there
the requisite regularities among transformations and terminal judgment
comparisons pased upon unidimensmnal quantiﬁcation. Any fransforma-
fion can result in all three relations on- @ single dimension depending
upon the change in the unattended dimension.

Consider the classic nonconservation responses obtained with the
Piagetian EC task using discontinuous materials. Some of the children
carry out @ terminal comparison of quantitative symbols Jerived from the

representing the density OF distance betweer the elements of the collec
tions. The early appearance of such unidimensional quantlﬁcation by Qe
ig attested O by Descoeudres (1921). In a task requiring the construc:
tion of & YOW of objects equal in quantity to a YowW already constxucted
by the experimenter, the younger children pay less attention 10 the pum-
ber to be reproduced than to the space to be occupied DY the row of
clements. |

Two dimenswnal gstimation- In its search for empirical regularities,
the system Degns to attend 10 poth dimensions, and consistent relation-
ships betweer transformations and terminal judgments begin 0 emerge.
Table 1 represents the initial form of these regularities- The table shows

the nine possible relational outcomes cesulting from the transformation

TABLE 1
Tnitial Regularities for Tdentity and Equivalencé Conservetion Based
upon TW0~D'1mensional Quan‘ﬂiﬁcation Via Qe

Relation petween Te and 'e OF Te and ¥'e
on

on
. Dimension 1 Dimension 2
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tinuous quantity have no equivalent for discontinuous quantity, others
are phenomenally similar enough for the association to be made. Further-
more, in those situations within the subitizing range, both Q. and Q.
can be in use simultaneously. Thus, the same transformation will have
an effect upon both the quantitative judgment based upon Q. and the
pair of relations (e.g, length, density) based upon Q.. Having identified
a specific transformation as one whose effect upon quantity is known via
earlier rules, the system associates that quantitative outcome with the
pair of quantitative outcomes based upon estimation.

The second problem involves the equivocal sequences in Table 1. Ulti-
mately they are separated into regular sequences through the following
process. Once the transformations yielding the seven unique outcomes
have been discriminated into three categories, the appropriate relational

attribute symbol (e.g., « 9 y) is associated with the outcome of each
transformation. The equivocal sequences then cease to be equivocal since
they each comprise an initial situation and a transformation which has
now been associated with a relational attribute symbol via one of the
three categories. The appropriate relational attribute symbol is thus
associated with each of these sequences.

The final form of the associations between pairs of quantitative com-
parison outcomes and relational attribute symbols is indicated in Table
9. All of them must be established for the complete generalization of the

TABLE 2
Tinal Regularities for Equivalence Conservation Based upon
Two-Dimensionel Estimation

Relation between Relation between Quantitative

z. and 7', o0 7. and y'e on  relation between
Line Transformation Dimension 1 Dimension 2 z and ¥
1 T, = = =
2 Ty > < =
3 T, < > =
4 T, < < <
5 T, < == <
] T, = < <
7 T, < > <
8 Ts > < <
9 T. > > >
10 T. > = >
11 T. = > >
12 T.. > < >
13 T. < > >
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conservation rules to Q.. Once this has taken place the appropriate re-
lational attribute symbols can be predicted directly on the basis of the
conservation rules, although children sometimes refer to the pairs of
quantitative comparison outcomes in justifying their predictions. “They
are still the same because this one is longer but that one is thicker.”

An appreciation of the association between the transformations dis-
criminated into three categories and the pairs of quantitative outcomes
presumably underlies the capability to make the type of observation de-
scribed by Halford (1970).

(a) Whenever material is poured from A to B and nothing is added
or subtracted, if there is any change in the material then there
will be another change as well.

(b) ... where a change occurs in one dimension, but not in any
other, something will be added or subtracted. (p. 305.)

Observation (a) is represented by lines 2 and 3 of Table 2 and observa-
tion (b) by lines 5, 6, 10, 11. |

Once the process adumbrated has taken place in “common” situations,
and the applicability of expanded conservation rules to the operations of
Q. has been established, the rules are applied to other situations in-
volving continuous quantity. Such extensions follow the order of the
phenomenal similarity of the transformations ‘involved - to- those  in the -
common situations. Thus, situations involving judgments and transforma-
tions on discontinuous quantity precede application to continuous quan-
tity, (e.g., Smedslund, 1964) while within continuous quantity plasticene
may be dealt with successfully prior to water (e.g., Uzgiris, 1964). |

Why shift from one dimension to two? Piaget’s (1957) illustration of
equilibration provides an account of the transiion to two-dimensional
quantification in the context of a task requiring equivalence conservation
of continuous quantity. He attributes the shift to three factors which
produce an oscillation of attention between the dimensions of height
and width and ultimately lead to the inclusion of both. First of all, at-
tention tends to be directed to the dimension on which there is the
greatest difference between the quantities of lquid. Since this dimension
varies from trial to trial switching of attention between the dimensions
is encouraged. Second, the same tendency is encouraged by the widely
reported empirical finding that in a two alternative situation repeated
responding to one of the alternatives increases the probability of an even-
tual response to the other. A final factor involved in the switch to a two
dimensional basis is the child’s dissatisfaction with the inconsistency of
the outcomes of his unidimensional judgments.

Our explanation of the shift of Q. to a two-dimensional mode lacks
the probabilistic arguments addressed by Piaget, but it has a certain
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afinity with his emphasis OB the child’s dislike of inconsistency- In ac-
cordance with the redundancy elimination principle the system investi-
gates the applicabﬂity to Q. of the consistent sequences discovered in
using Qs Independent of the redundancy elimination pi“incipie there is
strildng empirical evidence that the pi"esexvation of consistency and
agreemen‘c petweern the iudgmental outcomes of the Qs operates s an
jmportant goal. Intriguing examples of the expedients to which children

will resort 0 obtain consistency between the outcomes of Q. and Qe

Attempts to apply the consistent sequences t0 Q. and to preserve agree-
ment betweel jts outcomes and those of the other Qs are doomed 10
failure due its undimensional basis. It is at this juncture 30 develop-
ment that the second systenic principle becomes relevant. Confronted
with the failed goal of detecting the conservation cules the system seeks
to remove the difficulty by widening the range of the variables in the
context being considered. This tactic gives 1ise to the quantiﬁcation 0
the second dimension and to the resulting coordination process under-
lying the comparative judgments.

‘When the app]icability to Q. and Qe of the conservation rules detected
in the functioning of the Qs has been established the child has attained
the criterion 10F “operational” conservation. The consistent sequences
will be employed in making terminal judgments when any of the three
operators ar° being employed: The adoption of this criterion has im-
portant jmplications. Tt leaves much more T00m for individual yariations
in the course of the development of conservation than, for example, the
Genevan approach which tends t0 the view that the pace of development
may vary but the sequence ijs the same for all. This emphasis 0% in-
dividual variation 18 consistent with 2 number of empirical findings-
Greco (1962), for example, reports that some of his subjects when under-
going EC trials with two TOWS of discontinuous olements continue to give
classic nonconservation responses 01 the terminal quart jtative judgments
but when questioned on the pumerosity of the terminal collections are
able to respond correctly that “You have six and I have six” or “There
were five before.” This distinctiont between quotité (number name) and

quantité (numerical quantity) can be interpreted in terms of our oIt

. is still functioning 0B & unidnnensional and, thus, inconsistent basis.
Further evidence of the Q:Qe gequence of development and of cases
in which the reverse sequence appears 10 apply is provide by Churchill
(1958). Inan acceleration study she found that some of her subjects based
their correct responses OB tests of equivalence conservation of discontint-
ous quantity entirely on equmerical” features of the situation (Qe) while

s T
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The representation of such knowledge would take the form of relatively
powerful rules about the existence of classes of transformations with
certain properties. For the example above the following type of rule
would be required:

if T, then d Tp(y') — y” such that Vi(y,” = Yi)-

In words: “if a perceptual transformation T, has occurred on collection
y producing ¥/, then there exists another transformation Ty, that will pro-
duce an arrangement y” such that the final dimensions of y” will be equal
to the original dimensions of ¥ This type of rule is an abstraction of the
productive rules just described, and we would question its existence, in
an explicit form, at the stage of concrete operations. However, the ab-
stract rule is implicit in a system that contains a set of productive rules.

CONCLUSION

In this paper we have attempted to outline the development of some
of the processes that underlie performance on conservation tasks. The
model that emerges here consists of a precise description of pieces of a
production system for various stages of development, and a less precise
verbal description of some transition mechanisms that enable the system
to move from stage to stage. In many areas the model is highly specu-
lative because there is little empirical evidence to build tpox; in other
areas it is consistent with available evidence and it suggests some ques-
Hons that can be resolved through further experimentation.

In concluding his own thorough analysis of the acquisition of conser-

vation, Halford (1970) states

Such a [spontaneously functioning, self-regulating] system may be
difficult to influence by experimental manipulation, because it is in
its nature to compensate for any condition which is imposed. This
may explain the curiously elusive quality of the underlying features
of conservation performance, a feature which many investigators
admit has puzzled them. There is probably no direct answer 10 the
problem except that reasonably elaborate models should be con-
tinuously developed and refined to indicate the nature .of the
system . . . (p. 316). - '

We concur with Halford, but caution that the aim of such model build-
ing efforts be not elaboration per s¢, but rather precision, with elaboration
only as dictated by the demands of such precision. This has been the goal
of our efforts. We believe that the limitations of the current statement
can be eliminated only through more precise statements of both the stage
and the transition mechanisms, and hence through even further
elaboration. Coo Ty
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